

MICROGRIDS

Novel Architectures for Future Power Systems Paris, France, 29 January 2010

Control strategies with emphasis on decentralized control

Aris Dimeas NTUA

Outline

- Introduction
- Advanced control concepts for Microgrids
- Examples of implementation

Basic Challenges for Microgrids Control

- The legal framework/Market Structure
- Large Number of DGs and Houses with controllable devices.
- > The solution should have very low cost per node.
- > The Microgrid is a small electric system.
- The system should include DGs from different vendors and different principles of operation.
- The available communication infrastructure should be used in order to reduce the cost.

The Market Structure

Centralized & Decentralized Control

- Two possible control architectures may exist.
- The main issue is where the decision is taken
- The Centralized Approach suggests that a Central Processing Unit collects all the measurement and decides next actions.
- The Decentralized Approach suggests that advanced controllers are installed in each node forming an distributed control system.

The Centralized Approach

NN Tool Application - Load Shedding

PV ACTIVE POWER (KVV)	2.99	0.8
Wind Generator Active Power (kW)	1.43	12.32
MT1&2 Active Power (kW)	7.7	20.08
MT 3 Active Power (kW)	3.81	29.1
SOFC Active Power (kW)	27.93	19.77
MG Load (kW)	108.4	151.35
Injected Energy (MJ)	1.48	2.4
Load Curtailment (kW)	19.3	26.1

The Decentralized Approach

Why is Local Control Important?

Implementing the Decentralized Control Concept

- One approach of implementation adopts the intelligent agent approach
- Next some basic concepts of the agent theory will be presented as well some practical examples.

The Load Controller: a critical component

- An Intelligent Load Controller has been developed:
- 1. Windows CE 5.0
- 2. Intel[®] Xscale[™] PXA255
- 3. 64MB of RAM

Examples of Implementations

Example #1 Agent Based Control in a Kythnos

- The goal is to optimize the consumption of the houses
- The test site is a small settlement with 13 houses
- The production system includes:
- 12 kW of PV
- 53-kWh batteries
- 5-kW diesel

Goals of the Experiment

Software

- Java/Jade implementation
- CIM based ontology

Hardware

- Embedded Controller
- Measurements
- Communication
- Control via PLC

Technical

- Implement Distributed
 Control
- Test in real
 Environment

Electrical

- Increase energy efficiency
- Manage Non Critical Loads

The general idea:

The main load in each is the water pump. The goal of the system is to limit the usage of the pumps

Installation of the Controllers

Outside System House

Inside System House

House 11

House 5

House 7

House 4

The Process of the experiment

Step 1: The agents identify the status of the environment

Step 2: The agents negotiate on how the share the available energy

Measurements from Sunny Web Box (1/8/2009)

Example #2 Installation in LABEIN & Algorithm for secondary regulation

Laboratory Overview

The main characteristics of the developed system

- Implementation of the Multi-Agent Concept based on Jade platform
- Plug & Play capability
- Extensible

Secondary Frequency Control

The objectives of the secondary regulation are:

- Microgrid in grid connected mode: The secondary regulation will try to maintain a previously defined power exchange schedule with the main grid.
- Microgrid in islanded mode: The role of the secondary regulation control is to maintain the frequency in the microgrid as close as possible to a reference frequency.

Results

Example #3 Mannheim installation

The configuration of the test site

The physical configuration

The agent run on a remote PC and communicate via LAN with the Distribute I/O modules

Start Negotiation. The MGCC orders the system to start a new cycle. This can be done in variable steps (5min-1hour)

PV agent Announces Production

Battery agent Announces Production & SOC. The estimation of the available energy can be done using different methods (level of SOC, Frequency,

Agents Start Negotiating. The simple algorithm suggests that agents should consume equally.

Load E

Scalability (SOA)

Conclusions

- The Kythnos and Mannheim were the first test sites where the MAS system was implemented
- Several technologies have been tested: negotiation algorithms, intelligent load controller, wireless communication, CIM based ontology etc.
- The architecture is too complex for small systems but offers great scalability.

Further research- Open issues

- Agent algorithms and architectures (SOA) focusing in the management and market participation of large number of DGs and Controllable Loads.
- Hardware development (Load Controllers) focusing in cheap implementation with communication and control capabilities
- Standardization
- Larger test sites for future tests. Research for mass application
- Legal issues Market structure.

Thank you